Personal Wisdom: Validation and Age-Related Differences of a Performance Measure

Charlotte Mickler and Ursula M. Staudinger
Jacobs University Bremen

The 2 goals of this study were to develop and validate a performance measure of personal wisdom (PW) and to examine age differences. On the basis of the Berlin wisdom paradigm and growth theories of personality, 5 criteria of PW were developed. A sample of 83 younger adults (ages 20–40) and 78 older adults (ages 60–80) thought aloud about a PW task. Transcribed answers were rated. Validity was established with regard to indicators of personality growth, subjective well-being, intelligence, critical life events, and general wisdom. As expected, no age differences were obtained on the basic criteria, and negative age differences were found on the metacriteria indexing PW. Fluid intelligence and openness to new experience partially mediated these differences. It is argued that on average and for current cohorts age-related changes in psychological functioning may act as hindrances on the road to PW.

Keywords: wisdom, self-insight, personality development, growth, maturity

A Conception of Personal Wisdom

We suggest that PW focuses on judgment and advice with regard to difficult and uncertain matters of one’s own life1 (e.g., Staudinger, 1999b; Staudinger, Doerner, & Mickler, 2005). We used the literature on personality maturity to detail the conceptualization of PW. On the basis of an extensive review of concepts of personality maturity (see below), we concluded that personality maturity is reached once one’s own interests and potentials are realized while at the same time one considers the well-being of other people and society. We view PW as one possible indicator of personality maturity (cf. Staudinger & Kunzmann, 2005). We systematically reviewed approaches to the conceptualization of personality growth and personality maturity2 from the developmental, clinical, and personality literature (e.g., Allport, 1961; Bühler, 1968; Erikson, 1968; Jung, 1934; Labouvie-Vief, 1982, 2003; Loevinger, 1976; Maslow, 1968; Rogers, 1961; Ryff, 1989b) and identified a number of characteristics of a mature person that are common to almost all of the reviewed approaches. We then used these characteristics to modify and extend the five-criteria framework of the Berlin (general) wisdom paradigm (for detailed definition, see Staudinger, Smith, & Baltes, 1994). This procedure

1 Wisdom may encompass a judgment and self-regulatory component as well as a behavioral component. Usually, in psychological research we are confined, however, to the assessment of the social–cognitive component, which is assessed either by self-report or via a performance measure. This also applies to our notion of PW.

2 We used the term personality maturity to denote the end state of ideal personality development, whereas we applied the term personality growth whenever the developmental process toward this endpoint is concerned.
resulted in five criteria of PW that incorporated aspects from the wisdom and the personality maturity literature. The five criteria of PW consist of two basic and three metacriteria. The basic criteria involve knowledge about the self and one’s own life, strategies of self-management, and one’s own life management; the metacriteria concentrate on ways of processing information and of arriving at judgments about the self and one’s own life. The criteria are conceptualized such that each of them carries unique variance but that they also form a positive manifold (see Table 2).

The first basic criterion is rich self-knowledge, that is, deep insight into oneself and one’s own life. A self-wise person is aware of his or her own competencies and weaknesses, emotions, and goals and has developed a sense of meaning in life. The second basic criterion is that a self-wise person knows heuristics of growth and self-regulation (e.g., how to express and regulate emotions or how to develop and maintain deep social relations). Humor is an example of an important heuristic that helps one to cope with various difficult and challenging situations and to learn from them at the same time. The first metacriterion, interrelating the self, is characterized by an awareness of the contextual embeddedness of one’s behavior, feelings, or both. The contextualization can be threefold: age related, history related, and idiosyncratic. Interrelating the self also implies awareness of one’s biographical (diachronic) embeddedness, one’s dependency on others, and the interrelatedness of different self-domains. The second metacriterion is self-relativism. People high in self-relativism critically appraise their own behavior without losing a basic level of self-esteem. They are able to tolerate others’ values as long as the balance between their own good and that of others is kept. Finally, the last metacriterion, tolerance of ambiguity, involves the ability to recognize and manage the uncertainties in one’s own life and one’s own development. It means being aware of and able to deal with the fact that the present and the future are full of uncontrollable and unpredictable events, such as accidents and illnesses, and also that one’s past is never fully known.

A Model of Correlates and/or Antecedents of Personal Wisdom

For purposes of construct validation (see Cronbach & Meehl, 1955), we developed a model of correlates of PW.

Personal Wisdom and Personality Maturity

Because the concept of PW is considered as one indicator of personality maturity, we expected—in the sense of convergent validity—positive correlations with other indicators of personality maturity or growth such as ego development (Loevinger & Wessler, 1970), self-concept maturity (Doerner, 2006), and maturity-related scales of psychological well-being (Ryff, 1989a), that is, personal growth and purpose in life. Apart from other measures of personality maturity or growth, there are aspects of trait personality that have been discussed as important antecedents and/or correlates of personality growth, like openness to experience and psychological mindedness (Staudinger, Lopez, & Baltes, 1997). People open to new experiences are more likely to seek new contexts that provide them with new insights, and they are more likely to process discrepant information about themselves (Costa, Zonderman, & McCrae, 1991; McCrae & Costa, 1997). An interest in psychological issues might help with introspection and life reflection and thus facilitate PW (cf. Staudinger, 2001).

Personal Wisdom and Subjective Well-Being

We further assumed that basic mastery of everyday life and a basic level of subjective well-being (SWB) is a necessary but by no means sufficient precondition of PW (see also Staudinger & Kunzmann, 2005). Personality characteristics such as conscientiousness and agreeableness support everyday mastery (McCrae & Costa, 1991). Of course, a minimum level of SWB is necessary to have sufficient resources that allow reflection on one’s self and one’s life (cf. Murray, 1938), but once a certain threshold is reached, SWB should not contribute further to the development of PW. Thus, we expected only a low linear correlation with subjective well-being and in addition a curvilinear relationship.

Personal Wisdom and Cognitive Functioning

Intelligence has been found to show a moderately positive correlation with GW (Helson & Srivastava, 2002; Staudinger et al., 1997) and with measures of personality growth like ego development (for an overview, see Cohn & Westenberg, 2004; McCrae & Costa, 1980). According to Cattell’s (1987) investment theory, we need fluid abilities to acquire knowledge and experience (Ericsson & Smith, 1991). We assumed that the fluid mechanics of the mind are a necessary but not sufficient ingredient for the ontogeny of PW. Thus, we expected not a linear but a curvilinear relationship between fluid intelligence and PW. Crystallized intelligence is important for the expression and acquisition of self-related knowledge and judgment; thus, we expected a significant positive relationship to PW.

Personal Wisdom and Life Events

Positive and negative life events may confront a person with unexpected situations and hinder accustomed ways of dealing with the world (Wollheim, 1984), requiring one to adapt one’s processing schemes (Filipp, 1999; Tedeschi & Calhoun, 1995). Indeed, research has shown that more accommodative stimulation over the life span is associated with higher ego levels (Helson & Roberts, 1994) and higher levels of psychological mindedness (Helson, Mitchell, & Moane, 1984). Thus, we expected a positive relation—
ship between PW and the reported number of life events that caused a person to think about his or her life.

Personal Wisdom and General Wisdom

Because we assume PW and GW to be related but not identical (see also Staudinger et al., 2005), we expected a substantial correlation between the two types of wisdom. However, we also expected that covariation patterns with predictors would differ between PW and GW. Because PW captures the personal side of wisdom, it should be more strongly related than GW to indicators of personality maturity. Also, for life events we expected a stronger correlation with PW than with GW. Of course, we expected that such personal life events also imply the possibility of inferring insights into life in general, but personal life events should show a higher likelihood to contribute to PW than to GW.

Personal Wisdom and Age

We assumed PW would be more affected by an age-related self-enhancement bias (Kennedy, Mather, & Carstensen, 2004) than would GW. The self-enhancement bias decreases the likelihood of developing a more and more veridical and differentiated body of self-knowledge (Greenwald & Pratkanis, 1984). Thus, we expected negative age differences for PW, and in line with earlier findings, no age differences for GW (e.g., Staudinger, 1999a). Furthermore, we know that openness to experience, a personality characteristic that facilitates the acquisition of new self-insight (Costa et al., 1991; McCrae & Costa, 1997), decreases with age (e.g., Roberts, Robins, Caspi, & Trzesniewski, 2003). We expected this tendency to specifically compromise performance on the metacriteria of PW. The metacriteria require more explicitly than the two basic criteria a critical self-evaluation (self-relativism) or an awareness of conflicts (interrelating the self) and a realization of unpleasant ambiguities of one’s own life (tolerance of ambiguity). Furthermore, fluid intelligence, which also decreases with age, is especially relevant with regard to performance on the more abstract and complex metacriteria (when compared with the basic criteria). Therefore, we expected negative age differences only in the metacriteria of PW. We wanted to explore further whether age differences in openness for experience and fluid intelligence mediate the hypothesized age effects on PW.

Method

Participants

By means of newspaper articles about matters of lifespan psychology, but without mentioning the study’s hypotheses, we recruited a sample from the greater area of Dresden, Germany, stratified by age, gender, and education. Because this was the first study examining age differences in PW, we focused on younger and older adults. We expected differences between them to be larger than between either group and middle-aged adults. The final sample (161 participants) consisted of 83 younger adults (ages 20–40) and 78 older adults (ages 60–80). There were 66 men and 95 women, 115 with and 46 without a high school degree. Gender and level of education were evenly distributed between the age groups. Participants received €30 ($43.25) as compensation for their participation in the study. The sample included adults from all walks of life, including students, retirees, housewives, independent business owners, full-time and part-time workers, unemployed persons, and blue- and white-collar workers.

The average participant in the group of young adults had 14.9 years of education; in the group of old adults, 15.2 years. According to age norms for the German translation (Ostendorf & Angleitner, 2004), the average neuroticism displayed by the younger and the older adults was within the normal range of their age group, indicating a mentally healthy sample.

Measures and Procedure

Participants were tested on three occasions, and each session lasted about 2 hr. The first was a group-testing session during
Assessment of Personal Wisdom

PW task. We measured PW by first using a thinking-aloud and subsequently a rating procedure, developed after the Berlin wisdom paradigm (Staudinger et al., 1994). Because the Berlin wisdom paradigm uses life dilemmas of a fictitious person and is not useful for eliciting PW, we developed a new PW task (for a short example of an answer, see the Appendix). Pilot studies showed that using a self-related dilemma, such as talking about a past personal problem, was not ideal. Participants tended to describe the circumstances of such problem situations rather than focus on their own characteristics and strategies, possibly because of an actor–observer bias (Jones & Harris, 1967) or the highly self-threatening character of such a problem. Therefore, we decided to ask all participants about the same, generally nontwoing, but still central and rather age-neutral area of the self. A pilot study showed that the friendship domain best fulfilled these requirements: For young and old adults, friendship was ranked third among important life areas, after family and partnership and before occupation and hobbies. Supporting the assumption that friendship is a central life theme across all ages, we found that there was no difference in the number of close friends (M_{old} = 5.04, SD = 3.34; M_{young} = 5.16, SD = 3.41), F(1, 149) = 0.05, ns, or in the importance of the friendship domain (M_{old} = 3.68; M_{young} = 3.65), F(1, 154) = 0.03; nor were these variables correlated with the PW-related performance (r_{number} = .10, p = .25; r_{importance} = .11, p = .19).

Finally, we used the following instruction:

Please think aloud about yourself as a friend. What are your typical behaviors? How do you act in difficult situations? Can you think of examples? Can you think of reasons for your behavior? What are your strengths and weaknesses, what would you like to change?

Participants had 20 min to reflect about these questions before they had another 20 min to respond by thinking aloud. This thinking-aloud answer was tape recorded. During both the reflection time and the answering time, the interviewer left the room so that participants felt less constrained in talking about private issues. Before the PW task was administered, participants performed several practice tasks to get used to the procedure of thinking aloud in general and about themselves (for a detailed description, see Mickler & Staudinger, 2004). Selection and training of raters and scoring of verbal response protocols. After transcription of the verbal responses, trained raters evaluated the protocols according to the five PW criteria introduced above. From the pool of persons interested in the study but who had not participated, we preselected 30 applicants by means of telephone interviews. Of these, we selected 10 raters, 2 for each of the five criteria. For selection purposes, applicants participated in a group discussion on a wisdom-related task and were evaluated according to their degree of life experience, their value relativism, and quality of dealing with the task.

The 10 selected raters were trained to each apply one of the five PW criteria to avoid halo effects. Raters were randomly assigned to the respective criterion, and each criterion was rated by two raters to enable the calculation of interrater reliability. Raters were unaware of the study hypotheses. The terms wisdom or personality maturity were never used during the interaction with the raters. The criterion-specific training was preceded by a general training session (4 hr) practicing the general rating process, including judgmental biases. There were separate training sessions for each criterion that required approximately 5 hr each and included instruction in rating texts and verbal protocols against an ideal (in contrast to rank ordering). Raters practiced using protocols from the pilot study until calibration results were satisfactory (for more detailed information, see the training manual; Mickler & Staudinger, 2004). Each rater had to rate 162 protocols and was paid €600 (S$649.93) for that work. The order of the transcribed protocols was randomized across raters to prevent order effects. Each rater independently read the 162 protocols and assigned a score between 1 and 7 to every response, representing the degree to which it matched the ideal protocol with regard to the respective criterion of PW. A score of 7 indicated a close match to the ideal. Reliability information is provided in the Results section.

Control Variables. We assessed control variables to investigate whether certain characteristics of the PW task entailed disadvantages for certain groups (i.e., age groups). Self-disclosure refers to the tendency to talk about personal information (Jourard & Lasakow, 1958), which may influence performance on the PW task. It was measured using the Self-Disclosure scale from the German version of the Interpersonal Competence Questionnaire (Riemann & Allgoewer, 1993; English version by Buhrmester, Furman, Wittenberg, & Reis, 1988), which asks participants to rate several behaviors on a Likert scale (such as “Revealing something intimate about yourself while talking with someone you’re just getting to know”). The reliability of the eight-item scale was good, with an alpha of .78 (α_{old} = .78 and α_{young} = .77). Self-disclosure was significantly correlated with PW (r = .36, p < .01), and older adults were significantly less willing to talk about personal information, F(1, 158) = 8.03, p < .01. Further results, however, led us to interpret self-disclosure as a theoretically meaningful rather than a confounding variable. Self-disclosure was also significantly related to other measures revolving around personality maturity: openness to experience (r = .24, p < .01), self-concept maturity (r = .16, p < .05), ego development (r = .22, p < .01), and the growth scales of the Psychological Well-Being Questionnaire (Personal Growth and Purpose in Life: r = .25, p < .01). These correlations are not likely to be a result of the type of measurement because these instruments use quite different methods of assessment. The relational pattern seems rather to indicate that self-disclosure may in fact be considered a facet of personality maturity. Mature persons may be more inclined to talk openly about private matters (as is suggested in theories of the mature personality; Fromm, 1947; Horney, 1950; Rogers, 1961), or else talking openly about oneself with another person may actually improve self-insight (Farber, 2003; Staudinger et al., 2005) and thus PW.

A second potentially confounding variable, protocol length, was collected by counting the words of each protocol. Older adults gave significantly shorter answers than younger adults (M_{old} = 1,399, SD = 653, and M_{young} = 1,923, SD = 819), F(1, 159) = 20.01, p < .01. Protocol length was also significantly associated
Validation Measures

We considered the following validation measures: a measure of GW, measures of personality maturity, measures of SWB and adjustment, cognitive measures, and a measure of life events.

Measure of GW. To assess GW, we used the well-replicated meaning-of-life problem from the Berlin wisdom paradigm (e.g., Baltes, Staudinger, Maercker, & Smith, 1995). After several practice tasks, individuals were presented with the following fictitious life dilemma: “In reflecting over their lives, people sometimes realize that they have not achieved what they had once planned to achieve. What should one/they do and consider?” (Staudinger et al., 1994). In analogy to the PW task, participants were given 20 min to think about the question and were subsequently asked to respond by thinking out loud about the dilemma for another 20 min. The responses were tape recorded and later transcribed. The rater training and rating procedure was analogous to the one for PW and followed the original procedure of the Berlin wisdom paradigm (Staudinger et al., 1994). The same rater panel was used for both measures of wisdom. The rating of the GW protocols took place about 14 months later than the PW rating. Raters were assigned different criteria in those two rounds of rating to avoid confusion between GW and PW criteria (i.e., if they rated self-knowledge in the PW measure, they did not rate factual knowledge, which is the corresponding GW criterion). The reliability of the overall measure of GW was good for young and old participants ($\alpha = .85$, $\alpha_{old} = .86$, and $\alpha_{young} = .86$).

Measures of personality maturity. As discussed in the introduction, we chose five measures of personality maturity. To assess ego development, we used the 36-item version of Loewinger’s Washington Sentence Completion Test (Hy & Loewinger, 1996), a semiprojective test in which participants completed sentences such as “women are happy, because. . .” or “education. . .”. Two trained raters then assigned the completions of each of these sentences to one of eight stages of ego development of growing complexity according to a manual (Hy & Loewinger, 1996). Interrater agreement in this study was satisfactory, with 75% of equal judgments and a Cohen’s kappa of .62 ($\kappa_{old} = .66$ and $\kappa_{young} = .61$). Scores of individual sentences were combined according to given rules to produce a “sum” score and to assign a participant to a specific stage. Psychological well-being was measured using the instrument by Ryff and Keyes (1995) containing 54 statements, which participants rated on a Likert scale ranging from 1 to 5. Internal consistency for the six scales ranged from .65 to .77. We considered only two of the scales to capture personality maturity. To confirm this, we ran a principal-components analysis including five of the scales, excluding the Positive Relations With Others scale because of its thematic closeness to the task domain. Two factors emerged, explaining 63.5% of the variance. The first factor consisted of the Autonomy, Self-Acceptance, and Environmental Mastery scales, whereas the growth-related scales, Personal Growth and Purpose in Life, loaded on the second factor. To construct a measure of personality maturity, we built an unweighted composite of the two growth scales, which showed a satisfactory internal consistency ($\alpha = .77$, $\alpha_{old} = .84$, and $\alpha_{young} = .65$). The measure of self-concept maturity was developed to assess personal maturity from a self-concept perspective (Doerner, 2006; Staudinger et al., 2005). It measures the similarity between a participant’s response and an ideal profile representing a mature self-concept (Doerner, 2006). Participants freely generated important aspects of their self (e.g., roles) and judged the valence of these aspects. Subsequently, they described themselves on each of these self-aspects by using 20 positive and 20 negative adjectives. On the basis of these ratings, we calculated indicators of self-complexity, self-integration, emotional balance, and self-esteem. We determined self-concept maturity by the intraclass correlation between the profile of the participant (across such indices) and a theoretically defined ideal profile representing self-concept maturity. Openness to experience was assessed with a short form of the German version of the NEO Personality Inventory (Borkenau & Ostendorf, 1989; Costa & McCrae, 1985), containing six items for the Openness scale. The items showed good discriminatory power and were selected as representative of each of the six Openness subscales (see Staudinger, Fleeson, & Baltes, 1999). Because of the shorter version and the fact that openness is by definition a heterogeneous construct, internal consistency, as expected, was low ($\alpha = .25$, $\alpha_{old} = .23$, and $\alpha_{young} = .35$). Psychological mindedness measures the interest and understanding of psychological issues and has been identified as a correlate of GW (e.g., Staudinger et al., 1997). It was assessed using a subscale of the California Psychological Inventory (Gough, 1964). Participants answered 22 items using a dichotomous answering format. Reliability was satisfactory ($\alpha = .51$, $\alpha_{old} = .62$, and $\alpha_{young} = .45$).

Measures of SWB. Four of the indicators of SWB were assessed via a short form of the NEO Personality Inventory with six items for each scale (adapted from Costa & McCrae, 1985, by Staudinger et al., 1999). The reliabilities were satisfactory and similar for old and young adults: neuroticism, $\alpha = .75$, $\alpha_{old} = .74$, and $\alpha_{young} = .74$; extraversion, $\alpha = .55$, $\alpha_{old} = .58$, and $\alpha_{young} = .55$; agreeableness, $\alpha = .47$, $\alpha_{old} = .52$, and $\alpha_{young} = .40$; and conscientiousness, $\alpha = .73$, $\alpha_{old} = .73$, and $\alpha_{young} = .64$. The fifth indicator, life satisfaction, was measured by two items asking about the satisfaction with one’s life in the present and the past. We built the mean out of these items, which showed a satisfactory reliability ($\alpha = .63$, $\alpha_{old} = .70$, and $\alpha_{young} = .47$). The last two measures were taken from the Psychological Well-Being questionnaire (Ryff, 1989a) by means of the procedure described above. We used an unweighted composite of the Autonomy, Environmental Mastery, and Self-Acceptance scales in further analyses. It showed good internal consistency ($\alpha = .86$, $\alpha_{old} = .84$, and $\alpha_{young} = .86$).

Cognitive measures. For fluid intelligence, we used the short version of the Advanced Progressive Matrices (Raven, 1971) as an indicator of logical and analogical reasoning, which can be considered as a central dimension of fluid intelligence (Cattell, 1987). The first 18 items of Set 2 were included in this short version of the test, which has been used before in many other studies (e.g., Baltes, Kliegl, & Dittmann-Kohli, 1988; Staudinger et al., 1997). Participants had 15
min to solve the questions. As a measure of crystallized intelligence, we used the Vocabulary subtest of the German version of the Wechsler Adult Intelligence Scale, the Hamburg Wechsler Intelligenztest für Erwachsene (Wechsler, 1982), which is commonly used as a measure of semantic knowledge. The responses were coded using the coding instructions provided by Wechsler (1982). Each response received a score ranging from 0 to 2 points. Each participant’s performance is represented by the sum of points.

Measure of life events. We assessed life events with a scale adapted by Staudinger (1989) from the Psychiatric Epidemiology Research Interview life event questionnaire (Dohrenwend, Krasnoff, Askenasy, & Dohrenwend, 1978). The scale contains life events from 11 domains of life: childhood (8 items), school-education (8 items), occupation (18 items), love relationships—marriage (13 items), offspring (13 items), family (17 items), habitation (7 items), delinquencies—law issues (7 items), financial situations (4 items), social relationships (14 items), and health (12 items). Participants were asked to mark those life events that they had experienced and that had led to new self-insights. We calculated a person’s life events score as the sum of such life events. The reliability across the 11 domains was good (α = .85, αold = .88, and αyoung = .82).

Results

The Results section is divided into three parts. In the first section, we report interrater reliability and correlations among the personal and GW criteria. In the second, we examine the construct validity of the PW measure by testing zero-order correlations along with specific hypotheses about quadratic relationships. In the third section, we examine age differences in PW- and GW-related performance.

Interrater Reliability and Correlations Among the Five Criteria

In a first step, we assessed interrater reliabilities using Cronbach’s alpha coefficients, which were acceptable, especially when considering the complexity of the criteria (see Table 3). The Cronbach’s alpha for the mean of PW was .84 (αold = .86 and αyoung = .81), thus more than satisfactory. The coefficients for the individual criteria were satisfactory and comparable between the two age groups and ranged between .53 and .74, with only three coefficients falling below .60. On the basis of these results, it seemed justified to average the ratings from two raters to form a mean for each criterion and to calculate a mean across the five criteria. The correlations among the criteria of PW and GW are shown in Table 3. As a first indication of distinctiveness, the correlations among the criteria within one type of wisdom were significantly higher (GW, r(MM) = .47; PW, r(MM) = .46) than the correlations between PW and GW criteria (r(MM) = .27), respectively, r(159) = 2.30, p < .05, one-tailed (tested by Fisher’s Z test).

Construct Validity of the New Measure of Personal Wisdom

Univariate relationships between validation measures and PW. All analyses reported in this section were controlled for chronological age. This was necessary because the sample was composed of a young adult group and an older adult group; thus, the age variable was noncontinuous. Correlations, means, and standard deviations are reported in Table 4. In line with our hypotheses, all indicators of personality maturity except psychological mindedness were significantly correlated with PW, whereas none of the indicators of SWB showed a significant relationship with PW (see Table 4). Against our expectations, however, there was no quadratic relationship between indicators of SWB and PW: The z-standardized and squared indicators of adjustment were entered in a second step after the unsquared z-standardized variables but did not add significantly to the explained variance (ΔR² = .025), ΔF(6, 142) = 0.66, ns.

As predicted, the cognitive variables were significantly correlated with PW (see Table 4). We tested the hypothesis of a quadratic relationship for fluid intelligence by calculating a multiple regression analysis with fluid intelligence as predictor and PW and SWB as dependent variables with the squared scores of fluid intelligence entered in the second step. We used Z-standardized variables (as recommended by Cohen, Cohen, West, & Aiken, 2003). We proceeded in the same manner for crystallized intelligence to confirm the hypothesis that no quadratic relationship existed. As expected, for fluid intelligence the quadratic term added significantly to the explained variance (ΔR² = .035), ΔF(1, 153) = 5.88, p < .05, whereas for crystallized intelligence this was not the case (ΔR² = .006), ΔF(1, 153) = 0.97, ns (see Figure 1). The correlation between PW and fluid intelligence for participants with higher levels of fluid intelligence indicates that the quadratic relationship is an inverted-U-shaped relationship rather than only a saturation model. When looking only at the top-scoring 15% of participants, we found a marginally negative relationship with PW (controlled for age), r(34) = −.30, p < .10. There was no age interaction in the latter analysis (ΔR² = .03), ΔF(1, 33) = 1.00, ns. One interpretation of this negative correlation for highly intelligent persons could be motivational differences. The top 15% showed a trend to lower scores in the value domain universalism, which is considered to be part of a mature person’s value system, F(1, 158) = 2.77, p < .10, controlled for age.

In line with our hypotheses, life events were significantly correlated with PW (see Table 4). We also tested a quadratic model (see Figure 2). A regression analysis conducted in analogy to the one reported for the cognitive variables showed that the quadratic term added significantly to the linear term (ΔR² = .03), ΔF(1, 150) = 5.45, p < .05. This implies that a medium number of reported life events seems to be optimal with regard to PW-related performance. The quadratic relationship took the shape of an inverted U: For the highest scoring 15% of participants (n = 24), the correlation between life events and PW was negative (r = −.40, p < .05). There was no age interaction in this relationship (ΔR² = .02), ΔF(1, 20) = 0.64, ns. Interestingly, the top 15% showed a trend for lower life satisfaction than the rest of the sample, F(1, 150) = 3.58, p = .06.

4 There was no significant overall age difference in the predictive pattern. In the regression analysis, the interaction terms did not significantly add to the explained variance, ΔF(14, 102) = 1.11, ns. Two beta weights were significant. Crystallized intelligence was more important for younger than for older adults in the prediction of PW (b = −.28, p < .05), whereas self-concept maturity was marginally more important for older than for younger adults (b = .23, p < .10).
Differences in zero-order relationships of PW and GW. As expected, PW and GW were significantly correlated (see Table 4). However, we also found some differences in the covariation patterns. Using Fisher’s Z test, we found that life satisfaction correlated more highly with GW than with PW, \(t(158) = 2.28, p = .01 \), two-tailed, whereas life events were more strongly related to PW than to GW, \(t(158) = 2.37, p = .01 \), two-tailed. Interestingly, fluid intelligence showed a trend to be more strongly correlated with PW than with GW, \(t(158) = 1.68, p = .10 \), two-tailed, but only when not controlling for age. This indicates a stronger importance of age-related lower levels of fluid intelligence for PW than for GW.

Differences in the predictive pattern and specific shares of unique variance. To further establish discriminative validity, we examined differences in the overall predictive pattern of PW and GW. For this analysis, we created a dummy variable, coding the two facets of wisdom as a grouping variable. This allowed the calculation of interaction terms between type of wisdom measure and predictors. We then ran a multiple regression analysis, entering in the first step the predictive variables and the dummy variable. The results are presented in Table 4.

Table 3
Correlations and Cronbach’s Alpha (on the Diagonal) of the Personal and the General Wisdom Criteria

<table>
<thead>
<tr>
<th>Criteria</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Self-knowledge</td>
<td>.63</td>
<td>.28</td>
<td>.36</td>
<td>.33</td>
<td>.30</td>
<td>.17</td>
<td>.33</td>
<td>.36</td>
<td>.30</td>
<td>.30</td>
<td>.17</td>
<td>.33</td>
</tr>
<tr>
<td>2. Growth and self-regulation</td>
<td>.57</td>
<td>.69</td>
<td>.32</td>
<td>.43</td>
<td>.43</td>
<td>.25</td>
<td>.35</td>
<td>.27</td>
<td>.51</td>
<td>.62</td>
<td>.62</td>
<td>.62</td>
</tr>
<tr>
<td>3. Interrelating the self</td>
<td>.34</td>
<td>.48</td>
<td>.62</td>
<td>.25</td>
<td>.22</td>
<td>.14</td>
<td>.35</td>
<td>.18</td>
<td>.33</td>
<td>.22</td>
<td>.22</td>
<td>.22</td>
</tr>
<tr>
<td>4. Self-relativism</td>
<td>.31</td>
<td>.50</td>
<td>.57</td>
<td>.31</td>
<td>.25</td>
<td>.08</td>
<td>.42</td>
<td>.23</td>
<td>.23</td>
<td>.23</td>
<td>.23</td>
<td>.23</td>
</tr>
<tr>
<td>5. Tolerance of ambiguity</td>
<td>.38</td>
<td>.39</td>
<td>.54</td>
<td>.51</td>
<td>.27</td>
<td>.14</td>
<td>.33</td>
<td>.33</td>
<td>.33</td>
<td>.33</td>
<td>.33</td>
<td>.33</td>
</tr>
<tr>
<td>6. Mean personal wisdom</td>
<td>.69</td>
<td>.79</td>
<td>.76</td>
<td>.77</td>
<td>.71</td>
<td>.84</td>
<td>.48</td>
<td>.48</td>
<td>.48</td>
<td>.48</td>
<td>.48</td>
<td>.48</td>
</tr>
<tr>
<td>7. Factual knowledge</td>
<td>.69</td>
<td>.70</td>
<td>.55</td>
</tr>
<tr>
<td>8. Procedural knowledge</td>
<td>.57</td>
<td>.35</td>
<td>.55</td>
</tr>
<tr>
<td>9. Contextualism</td>
<td>.48</td>
<td>.35</td>
<td>.55</td>
</tr>
<tr>
<td>10. Relativism</td>
<td>.62</td>
<td>.50</td>
<td>.31</td>
<td>.63</td>
<td>.63</td>
<td>.63</td>
<td>.63</td>
<td>.63</td>
<td>.63</td>
<td>.63</td>
<td>.63</td>
<td>.63</td>
</tr>
<tr>
<td>11. Management of uncertainty</td>
<td>.60</td>
<td>.40</td>
<td>.43</td>
<td>.48</td>
<td>.58</td>
<td>.58</td>
<td>.58</td>
<td>.58</td>
<td>.58</td>
<td>.58</td>
<td>.58</td>
<td>.58</td>
</tr>
<tr>
<td>12. Mean general wisdom</td>
<td>.87</td>
<td>.74</td>
<td>.69</td>
<td>.76</td>
<td>.74</td>
<td>.74</td>
<td>.74</td>
<td>.74</td>
<td>.74</td>
<td>.74</td>
<td>.74</td>
<td>.74</td>
</tr>
</tbody>
</table>

Note. Correlations ≥ .16 are significant at \(p \leq .05 \).

Table 4
Zero-Order Correlations Between Predictors and Both Wisdom Variables

<table>
<thead>
<tr>
<th>Predictors</th>
<th>Correlation with personal wisdom</th>
<th>Correlation with general wisdom</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(r_{\text{controlled for age}})</td>
<td>(r)</td>
</tr>
<tr>
<td>General wisdom</td>
<td>.47**</td>
<td>.48**</td>
</tr>
<tr>
<td>Indicators of personality maturity</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ego development</td>
<td>.24**</td>
<td>.26**</td>
</tr>
<tr>
<td>Self-concept maturity</td>
<td>.32**</td>
<td>.28**</td>
</tr>
<tr>
<td>Psychological mindedness</td>
<td>.11</td>
<td>.17</td>
</tr>
<tr>
<td>Openness for experience</td>
<td>.21**</td>
<td>.27**</td>
</tr>
<tr>
<td>Psychological well-being (maturity)</td>
<td>.21**</td>
<td>.28**</td>
</tr>
<tr>
<td>Indicators of subjective well-being</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Life satisfaction</td>
<td>.02</td>
<td>.06</td>
</tr>
<tr>
<td>Negative emotions</td>
<td>-.02</td>
<td>.04</td>
</tr>
<tr>
<td>Positive emotions</td>
<td>.05</td>
<td>.09</td>
</tr>
<tr>
<td>Conscientiousness</td>
<td>-.04</td>
<td>-.11</td>
</tr>
<tr>
<td>Agreeableness</td>
<td>.11</td>
<td>.05</td>
</tr>
<tr>
<td>Psychological well-being (subjective well-being)</td>
<td>.03</td>
<td>.05</td>
</tr>
<tr>
<td>Cognitive factors</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fluid intelligence</td>
<td>.21**</td>
<td>.30**</td>
</tr>
<tr>
<td>Crystallized intelligence</td>
<td>.32**</td>
<td>.24*</td>
</tr>
<tr>
<td>Life events reflected upon</td>
<td>.21**</td>
<td>.19*</td>
</tr>
<tr>
<td>Age*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Young</td>
<td>29.8</td>
<td>6.09</td>
</tr>
<tr>
<td>Old</td>
<td>67.22</td>
<td>4.18</td>
</tr>
</tbody>
</table>

Note. * Age was used as a dichotomous variable. ** \(p < .05 \) . *** \(p < .01 \).
variable and in a second step the interaction terms. A significant increase in explained variance would show an overall difference in the predictive patterns of PW and GW. Our analysis showed that the interaction variables added 4.1% of additional variance; however, this increase was not significant, $\Delta F(15, 227) = 0.93, ns$. Similarly to the analysis of zero-order correlations, life satisfaction had a trend ($b = .38, p < .10$), and life events reflected on ($b = -.36, p < .05$) showed a significant interaction with the type of wisdom, indicating that life satisfaction was more strongly related to GW and life events were more important for PW. Against our prediction, none of the maturity variables showed a stronger relationship with PW.

To illustrate the differential importance of sets of predictors for PW and GW, we determined the shares of unique variance in the prediction of each wisdom type by varying the sequence of entry so that each set of predictors was entered last once. The ΔR^2 of the last step indicates the unique variance that is explained by the set of variables entered last. For PW (Figure 3, top), personality maturity explained the largest share of unique variance; this share showed a trend to be larger than the share explained by SWB, using Fisher’s Z test, $t(159) = 1.47, p < .10$, one-tailed. Life events were the second most important predictor. In contrast, for GW (Figure 3, bottom), adjustment explained the largest share of unique variance, followed by crystallized intelligence.

Age Differences in Personal Wisdom

In this last part of the Results section, which corresponds to the second goal of the study, we report on age differences in PW and compare these with the age effects in GW. For these analyses, we used the five PW criteria as dependent variables because we expected differential effects for basic and metacriteria. In a first step, we calculated a multivariate analysis of variance with age group as a two-level factor. As expected, older adults scored significantly lower in all of the metacriteria (see Figure 4 and Table 5). In the basic criteria, however, there was no significant age difference. On the contrary, older adults even showed a tendency for higher performance than younger adults on the criterion self-knowledge.

Figure 1. Quadratic relationship of fluid and crystallized intelligence with personal wisdom.

Figure 2. Quadratic relationship of life experience with personal wisdom.

Age differences in PW and ontogeny. As expected, openness to new experience and fluid intelligence showed negative age differences, $F(1, 155) = 20.37, p < .01$, and $F(1, 159) = 77.93, p < .01$, respectively. Controlling for openness to experience and fluid intelligence amplified the trend for better performance of older adults in self-knowledge and attenuated negative age differences in two of the three metacriteria (interrelating the self and tolerance of ambiguity), but the largest difference in the metacriterion self-relativism—even though reduced—remained significant (see Figure 4 and Table 5).

Comparison of age differences in PW and GW. As a last step in establishing differential validity, we calculated age differences for GW. In line with our hypothesis, we did not find age differences in the mean score of GW, $F(1, 149) = 0.00, ns$, whereas in PW we did find that younger adults scored significantly better on the mean score, $F(1, 159) = 9.00, p < .01$. Additionally, we ran a repeated measures analysis with the two types of wisdom as a within factor and age as a between factor. The interaction of wisdom type with age was significant, $F(1, 149) = 6.31, p < .05$ (see Figure 5 for illustration), indicating that age plays a stronger role in PW than in GW.

Discussion

In this study, we pursued two major goals. First, we wanted to develop a performance measure of PW and test its validity. Second, we examined age differences in PW- and GW-related performance. By and large, our hypotheses were confirmed. Establishing reliability and validity of the new measure was successful. First, we obtained evidence of the differential validity of PW and GW and found differential age effects.

Reliability and Validity of the Personal Wisdom Measure

One first precondition for validity is reliability. Interrater reliability of the five criteria was acceptable and comparable to the...
reliabilities found when using the Berlin wisdom paradigm (Baltes et al., 1995; Kunzmann & Baltes, 2003; Pasupathi & Staudinger, 2001; Smith, Staudinger, & Baltes, 1994). Considering the significant zero-order and unique relationships between PW and indicators of personality maturity, it seems justified to consider PW-related performance as an indicator of personality maturity. The lack of relation to indicators of SWB also suggests that it is indeed not enough to successfully master the chores of everyday life (SWB) to judge wisely about one’s life. Beyond that, PW requires critical self-reflection, which can lead to negative emotions and thus is not conducive to SWB (Strack, Schwarz, & Gschneidinger, 1985). We do, however, assume that mastery of everyday life is a necessary precondition because it frees resources that are necessary to make progress on the road to PW. In this study, however, we did not establish such a curvilinear relationship. Possibly this was because the recruited convenience sample did not show enough heterogeneity in terms of levels of SWB and had a rather high level of functioning.

As expected, fluid and crystallized intelligence were significantly correlated with PW. Two interpretations of this finding need to be kept in mind and cannot be separated given the cross-sectional nature of the data set: First, it takes fluid intelligence to solve the PW task; second, it takes fluid intelligence to accrue PW from personal experiences. The relationship followed an inverted-U shape, implying that among highly intelligent persons there is a significant negative correlation of fluid intelligence with PW. Follow-up analyses suggested that this may be because of differences in the value system, in particular lower scores in the value domain universalism. Extremely intelligent people may tend to be rather egotistical and focused on achievement, such as career as opposed to interpersonal or social issues, which are important facets of PW.

As also expected, the last domain of predictors, life events, showed a significant correlation with PW-related performance, and explained a significant and substantial unique share of variance. This suggests that life events are an important correlate of PW. Interestingly, however, it is not the more the better. Rather, a medium amount of reported life events showed the highest positive relation with PW. It seems that a medium number of events that caused us to think about our lives provides for the best development of PW-related performance. Possibly, a large number of life events are too taxing to cope with (e.g., O’Hara, Schlechte, Lewis, & Verner, 1991). This interpretation is supported by our finding that participants with a very high number of life events report lower life satisfaction. However, given the fact that we could not differentiate between positive and negative events, we have to be careful with this interpretation. Furthermore, because of the cross-sectional nature of the present data set, we cannot distinguish between cause and effect: Life events are often conceptualized as the cause of personality change (e.g., Park, 1999), but they can also be the result of personality characteristics (Saudino, Pedersen, Lichtenstein, & McClearn, 1997; Schmitz, Rothermund, & Brandstädter, 1999). In that latter sense, the inverted-U-shaped relationship between PW and life events may indicate that persons with low PW have a higher likelihood of

![Figure 3. Domain-specific shares of unique variance explained in personal wisdom (top panel) and general wisdom (bottom panel). Cryst. = crystallized; Wellb. = well-being; Var. = variance.](image3)

![Figure 4. Mean ratings of the personal wisdom criteria by age. Raw scores and scores controlled for fluid intelligence and openness to experience.](image4)
experiencing a high amount of critical life events because of their unwise behavior.

Finally, we demonstrated that as expected GW and PW were substantially correlated. We need to take into account, however, that a part of this overlap in variance is because of the commonality in the method of assessment. Besides such similarities between the two wisdom measures, we also identified theory-consistent differences with regard to the respective predictive patterns. A substantial amount of variance was explained by type of wisdom (4.1%). Furthermore, personal life events did not contribute to the prediction of GW-related performance, but they played an important role for PW. At the same time, life satisfaction had more predictive power for GW. This difference may possibly be a result of the self-critical aspects of PW, which are not necessary for GW. Thus, wisdom about ourselves and our own life shares common ground with GW but also demonstrates unique characteristics. Given the measures included in this study, the uniqueness of the PW measure seems to lie in the personal aspects of life and the fact that PW is largely independent of SWB. Finally, the differentiation between PW and GW was supported by differential age effects that are theory consistent (see below).

However, a number of limitations of this study have to be taken into account when interpreting such validation results. First, we need to consider the noncontinuous age distribution of the sample, which makes comparisons with a continuous age distribution difficult. Second, the sample was somewhat biased with regard to level of education, and thus relationships with indicators of intelligence may have a tendency to be underestimated because of restricted variance. Third, we have to consider that the GW task was administered after the self-related task, thus implying the possibility of practice effects being included in the GW performances. However, because the sessions were 2 weeks apart and the subject matter of the two tasks differed, this may not have played a major role. Finally, fourth, the GW and the PW tasks came from different domains. Although the advantage of the GW task we used was that it is well-established, in future studies it will be necessary to develop a GW task that also taps into the friendship domain (e.g., using a dilemma involving two friends).

Despite these limitations, all in all, we have collected the first evidence that the new measure of PW shows predictive validity and uniqueness. It needs to be emphasized that as a performance measure, the new measure overcomes the problem of social desirability that compromises many self-report measures of PW (Ardelt, 2003; Ryff, 1989a; Webster, 2003). By clearly separating the two types of wisdom within one measurement paradigm, it has become possible to investigate their relations and mutual dependencies.

Table 5

<table>
<thead>
<tr>
<th>Source of variance</th>
<th>Without covariates</th>
<th>With fluid intelligence, openness</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>F</td>
<td>η^2</td>
</tr>
<tr>
<td>Univariate (age)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Self-knowledge</td>
<td>1.74</td>
<td>1.159</td>
</tr>
<tr>
<td>Growth and self-regulation</td>
<td>2.29</td>
<td>1.159</td>
</tr>
<tr>
<td>Intersubjective self</td>
<td>11.50**</td>
<td>1.159</td>
</tr>
<tr>
<td>Self-relativism</td>
<td>30.20**</td>
<td>1.159</td>
</tr>
<tr>
<td>Tolerance of ambiguity</td>
<td>5.57**</td>
<td>1.159</td>
</tr>
<tr>
<td>Multivariate</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age</td>
<td>8.83**</td>
<td>5, 155</td>
</tr>
<tr>
<td>Openness</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fluid intelligence</td>
<td>1.34</td>
<td>5, 149</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

a Criterion for the multivariate tests was Pillai’s Trace.

$^* p < .01. \quad ^† p < .10.$

Figure 5. Interaction between scores in type of wisdom and age: Results of a repeated measures analysis.

5 We would like to thank one of the reviewers for this idea.
Age Differences in Personal Wisdom

As expected, we found no age differences for the two basic criteria, and younger adults even scored significantly higher on all three metacriteria. The finding of higher scores for younger adults is consistent with evidence on age effects in personal maturity reported by Labouvie-Vief and Helson (e.g., Helson & Wink, 1987; Labouvie-Vief, Chiodo, Goguen, Diehl, & Orwoll, 1995; Labouvie-Vief & Medler, 2002; Wink & Helson, 1997). At the same time, this finding differs from results obtained with the GW measure in our sample and in earlier studies (e.g., Staudinger et al., 1994), suggesting that age plays a stronger role in PW than in GW. When controlling for openness to new experiences and fluid intelligence, older adults’ performance showed a trend higher than that of young adults for the basic criterion of self-knowledge, but was still significantly lower for one of the three metacriteria, self-relativism. Declining cognitive resources may make abstract thinking, which is needed for performance on the metacriteria, more difficult for older adults, and the higher openness to experience of younger adults may be an advantage when it comes to testing established self-related insights against new evidence.

We suggest, however, that there may be additional reasons for such age differences. The psychosocial crises of old age, integrity versus despair—that is, coming to terms with one’s own life as lived (Erikson, 1968)—may prejudice older adults’ life reflection toward a positive evaluation of one’s life (Kennedy et al., 2004). With regard to the mastery of this developmental task, a positive self-evaluation is highly functional, but at the same time it is detrimental to the development of PW because it avoids confronting one’s own limitations and weaknesses. Coming to terms with one’s life as lived is easier given a positive evaluation of one’s life, but the PW criterion self-relativism also requests that one pay attention to the negative aspects of one’s life. This interpretation is supported by the larger age effects in PW than in GW: For GW-related performance, self-criticism is less crucial than for PW.

Whenever interpreting age differences, we certainly have to consider potential cohort effects. For instance, the experience of certain historical events such as the Second World War, Nazi Germany, or life in the authoritarian system of the German Democratic Republic may be of relevance (Elder, 1999). However, it remains unclear whether and in which way a specific event, like war, contributes to growth. Even though it is claimed that many critical life events do have this effect (Filipp, 1999; Park, 1999; Tedeschi & Calhoun, 1995), events may also prove to be detrimental by, for instance, causing repression of memories (Karon & Widener, 1997). Most likely, however, older cohorts were brought up in a more authoritarian manner, which is negatively related to personality growth (Browning, 1983). To reflect about oneself and talk with others about oneself is much more acceptable today than it was during the time of older adults’ upbringing (Ryff, 1984). Especially in the German Democratic Republic, it was not safe to reveal opinions, which might be one reason for the lower self-disclosure scores of older adults.

All in all, we may conclude that age differences in PW are probably a result of a complex interplay between lower levels of fluid intelligence and openness to experience, a higher motivation to focus on a positive evaluation of one’s life than on personality growth, and cohort-specific contexts.

Conclusion

This study introduced a measure of PW and answered several questions concerning the new construct of PW. Nevertheless, many issues still remain open. It would be interesting to examine the development of PW across time and in this way study its antecedents. Also, we need to explore the plasticity of PW-related performance in old age and test whether it is possible to construct performance contexts that help to compensate for some of the disadvantages of older age. The newly developed measure of PW makes it possible to realize such further studies.

References

Dohrenwend, B. S., Krasnoff, L., Askenasy, A. R., & Dohrenwend, B. P.

I’ve learned many things through my friendships. I think others could say the same. Moreover, I think it is very stimulating to be different from each other; especially when friends can view things from their own individual stance—that can be quite enriching. I once had a friend when I was in kindergarten. Back then, my family had to move to another city. Was that the reason for our friendship falling apart? Probably, yes. But even with the earliest of friendships, it often happens that you grow apart from each other as you mature. I actually had friends even when it was especially difficult under the social conditions and circumstances, such as when my father passed away early in my childhood and we had to move to my grandparents’. Of course, it may also have had to do with me that some friendships fell apart. I would naturally have some influence, but the other person carries part of the responsibility as well. One other very good friend of mine back then got married quickly—that’s the way things go. We were about 20 years old then. And then our interests kind of split up, which is quite understandable. She decided to go about having children, while I went on to college. Despite that, we both always had this feeling of being fully, 100% able to count on one another. Later, when I went to college, I got into a whole different environment and had to start over with meeting new friends. I eventually met some friends through my husband, which I otherwise personally wouldn’t have. But because I love him, I was ready to accept his friends, even if I didn’t like them all too much. When I look back to all of my friendships, I remember one very good friend of mine who passed away. That’s something we all will one day have to come to terms with. For some, it comes sooner than others. In the meantime, it’s something that belongs to life, placing all of our fears into context. How I am as a friend depends completely on the degree of the friendship.